
Scout
System Monitor

Scout 37.105 (Release 2.2)
Edition 2.2
April 1995

by Andreas Gelhausen

Chapter 1: Introduction 1

1 Introduction

What is Scout?

Scout is a tool that allows you to monitor your computer system. It
displays many different things — like tasks, ports, assigns, expansion boards,
resident commands, interrupts, etc. — and you can perform some certain
actions on them.

For example you can freeze tasks, close windows and screens, release
semaphores or remove locks, ports and interrupts.

Through AmiTCP it’s also possible to use Scout as an TCP/IP service.

Since version 2.0 of Scout you can use nearly all implemented functions
through shell parameters. Therefore it’s not necessary to install MUI for using
Scout, but you will need MUI, if you want to use Scout with its graphical
user interface.

2 Scout

Chapter 2: Legalities 3

2 Legalities

Copyright

Scout 37.105 (Release 2.2) - Copyright c© 1994 by Andreas Gelhausen,
all rights reserved.

Scout is a giftware program and you are only allowed to freely distribute
it, if you let this archive unchanged. No part of this archive is allowed to
be distributed with commercial software without a written permission of the
author.

Disclaimer

No warranties are made for this program. All use is at your own risk.
No liability or responsibility is assumed for any damages occured during the
usage of Scout. You have been warned.

Giftware

Scout 37.105 is giftware. If you like and use this program, you are wel-
come to appreciate my programming efforts by sending me a little present
— thanks a lot in advance! =:^)

4 Scout

Chapter 3: Before Starting 5

3 Before Starting

3.1 System Requirements

Scout only requires Amiga operating system version 2.04.

If you want to use Scout’s graphical user interface, you also have to
install MUI version 2.1 or higher. See also Section 3.2 [MUI], page 5.

The TCP/IP features of Scout are only available, if you have installed
the version 4.0 of AmiTCP. See also Section 3.3 [AmiTCP], page 5.

3.2 MUI - MagicUserInterface

c© Copyright 1993/94 by Stefan Stuntz

MUI is a system to generate and maintain graphical user interfaces. With
the aid of a preferences program, the user of an application has the ability
to customize the outfit according to his personal taste.

MUI is distributed as shareware. To obtain a complete package containing
lots of examples and more information about registration please look for a
file called ‘muiXXusr.lha’ (XX means the latest version number) on your
local bulletin boards or on public domain disks.

If you want to register directly, feel free to send DM 30.- or US$ 20.- to

Stefan Stuntz
Eduard-Spranger-Straße 7

80935 München
GERMANY

3.3 AmiTCP

AmiTCP is a TCP/IP protocol stack for the Amiga. The demo version 4.0
(or higher) should be available in greater public domain collections or on the
AmiNet. Ask your preferred Amiga dealer. =:^)

Installing Scout

You only have to copy the program scout and the data file ‘scout.data’
to your favourite directory and then you can start it. The file ‘scout.data’
includes data of expansion boards.

6 Scout

Chapter 4: How to use Scout 7

4 How to use Scout

This chapter describes the usage of Scout through its graphical user in-
terface. This graphical user interface is based on the Magic User Interface
(MUI) and MUI have to be installed in your system, if you want to use Scout
trough windows and so on.

If you don’t like MUI, you should see Section 4.20 [Scout without MUI],
page 24.

If you start the program you will see the main window which includes
many gadgets. Each of these gadgets represents a certain kind of system
structure.

You can choose between:

Assigns, Devices, Expansions, Fonts, InputHandlers, Interrupts, Li-
braries, Locks, Memory, Mounted Devices, Ports, Resident Commands, Res-
idents, Resources, Semaphores, Tasks, Vectors and Windows.

Click one of these gadgets and another window will be opened with a list
of the structure type that is indicated on the pressed gadget.

Example: Press the task gadget and you will get a window with
the list of tasks and processes.

You can also select these functions by pressing the underlined key you
see on each gadget or by using the right mousebutton menu.

If you wish to handle/remove a given structure, you should know what
you do.

Warning: Wrong handling of the showed structures can crash your
system. At the worst you will lose your data.

Please note: You should not be surprised, if you don’t find a certain de-
tail information in this manual, because it’s to much work to explain each
element of all the structures you could see in this program.

Many books are written about these things and if you want to have more
information about them, you should have a look in the specialized literature.

4.1 Assigns

This type of structure assigns a logical name to a directory.

If you assign the directory ‘dh0:data/documents’ the logical name
‘texts:’, you will also be able to choose a file filename in that directory
with the path ‘texts:filename’.

8 Scout

Column items

‘Address’ Address of the assign structure.

‘Name’ Logical name of a directory

‘Path’ Here you will find the path of the directory.

Actions

‘Update’ Selecting this gadget updates the list of assigns.

‘Print’ This function allows you to send the list of ‘Assigns’ to printer
or a selected file.

‘Remove’ The selected assign will be removed with this function.

‘Exit’ The ‘Assigns’ window will be closed.

4.2 Devices

A device is — like a library (see Section 4.7 [Libraries], page 13) — a
collection of functions/procedures, which have to do certain jobs.

E.g. the ‘trackdisk.device’ includes functions for the floppy disk han-
dling.

Column items

‘Address’ Address of the device structure

‘ln_Name’ Name of a device

‘ln_Pri’ Priority of a device

‘OpenC’ This element shows how often the device was opened.

‘RPC’ ‘RPC’ means ‘RAM Pointer Count’ and shows how many jump
addresses of the device point into RAM. In this way many pro-
grams— like the setpatch command from Commodore— patch
the system.

Many viruses patch the system in this way too, but don’t panic
now. If you check your system in regular intervals with a current
virus killer, it should be out of danger.

If the whole program code of the device is located in RAM,
you will find a dash (minus sign) here, because in this case it’s
unimportant how many jump addresses point into RAM.

‘ln_Type’ Type of this structure (usually ‘device’)

Chapter 4: How to use Scout 9

Actions

‘Update’ If you select this gadget, the list of devices will be updated.

‘Print’ This function allows you to send the list of ‘Devices’ to printer
or a selected file.

‘Remove’ The selected device will be removed with this function provided
that no program uses this device anymore and the ‘OpenC’ is
zero.

‘Priority’
Herewith the priority of the device can be changed. A little win-
dow will be opened, that asks you for a new priority. Through
the new priority it can happen that the device gets a new place
in the device list.

‘More’ Another window will be opened and you will see more informa-
tions about the selected device.

You will have the same effect, if you doubleclick an element of
the device list.

‘Exit’ The ‘Devices’ window will be closed.

4.3 Expansions

In this list you will find all your expansion boards (graphic boards, mem-
ory expansions and so on).

Column items

‘BoardAddr’
Usually you will find the ROM of the card here. If this address
points into RAM, the card is a memory expansion.

‘BoardSize’
If the entry belongs to a memory expansion, the size of the
memory is displayed here. Otherwise it’s the ROM size of the
card.

‘Manufacturer’
ManufacturerID, assigned by Commodore

‘Product’ Productnumber, assigned by the manufacturer of the board

‘Serial#’ Serialnumber of the card (usually unused)

10 Scout

Actions

‘Print’ This function allows you to send the list of ‘Expansions’ to
printer or a selected file.

‘More’ Now a window will be opened, that includes more informations
about the selected expansion board.

Doubleclick an element of the ‘Expansions’ list and you will
have the same effect.

‘Exit’ The ‘Expansions’ window will be closed.

Unknown expansion boards

If you select an expansion board by selecting its list item, you will get
the name of the manufacturer and the card in the textfield you find below
the list, provided that I have known these data at compiling.

If no information is available in this textfield or the given information is
wrong, you should send me the following data, please.

1. ManufacturerID (Manufacturer)
2. ProductID (Product)
3. Name of the company
4. Name of your expansion card

If you send me these data, the next version of file ‘scout.data’ will
include your expansion boards. Please be as precise you can.

4.4 Fonts

This function will show you all fonts existing in your system.

Column items

‘YSize’ Vertical size of the font

‘Count’ Here you can see how many programs use the font.

‘Type’ ‘ROMFONT’ means the font is located in ROM and ‘DISKFONT’
means the font was loaded from disk/harddisk.

‘Name’ Name of the font

Chapter 4: How to use Scout 11

Actions

‘Update’ The list of fonts will be updated.

‘Print’ This function allows you to send the list of ‘Fonts’ to printer or
a selected file.

‘Close’ The font will be closed by using this function.

‘Remove’ It is possible to remove a font from system, provided that no
program uses it and it’s no ‘ROMFONT’.

‘Exit’ The ‘Fonts’ window disappears.

4.5 InputHandlers

Input handlers take care of all user input arriving in system (pressed keys,
mouseclicks, inserted disks, etc.). They stand one behind the other like on
a production line and analyze the user input. The input handler with the
highest priority gets the ‘events’ first and if it doesn’t know how to react on
these ‘events’, the second input handler gets them, and so on.

Usually the system input handler has a priority of 50. Every input han-
dler, that wants to get the user input before the system, must have a higher
priority.

Column items

‘ln_Name’ Name of the input handler

‘ln_Pri’ Its priority

‘is_Data’ This address points to some data needed by the input handler.

‘is_Code’ The program code starts here. If the code is located in RAM,
the address is of different color. Otherwise you can find the
code in ROM. Some viruses install an input handler in system.
In this case the ‘is_Code’ address points into RAM, but many
other programs uses input handlers, too. Don’t panic!

Actions

‘Update’ The list of input handlers will be updated when you select this
gadget.

‘Print’ This function allows you to send the list of ‘InputHandlers’ to
printer or a selected file.

‘Remove’ Removes an input handler from system.

12 Scout

‘Priority’
Changes the priority of an input handler.

‘Exit’ The window will be closed.

4.6 Interrupts

Interrupts are important events the computer system has to react on.
It exists a list of interrupt routines for each interrupt type. If a certain
interrupt occurs, all these interrupt routines will be called. During their
execution the running program will be interrupted.

Column items

‘ln_Name’ Name of the interrupt

‘ln_Pri’ Its priority

‘is_Data’ At this address you find the data of the interrupt.

‘is_Code’ Address of the interrupt code. If this address points into RAM,
it’s of a different color.

‘NUM’ This number represents the type of event the interrupt routine is
called on. The ‘IntName’ you find in the interrupt detail window
gives you a little bit more information about it.

Example: Number 5 means that the interrupt is called at every
vertical blank interval.

Actions

‘Update’ The list of interrupts will be updated.

‘Print’ This function allows you to send the list of ‘Interrupts’ to
printer or a selected file.

‘Remove’ If the interrupt is a server you can remove it from system. An
interrupt handler can’t be removed by Scout.

If you call ‘avail flush’ and the audio.device isn’t used, the
interrupt handlers of the audio.device will be removed.

‘More’ Now a window will be opened that includes more details of the
interrupt.

‘Exit’ Selecting this gadget will close the ‘Interrupts’ window.

Chapter 4: How to use Scout 13

4.7 Libraries

A library is a collection of functions/procedures, which have to do certain
jobs. E.g. the ‘graphics.library’ includes routines for graphical display.

Column items

‘Address’ Adress of the library structure

‘ln_Name’ Name of a library

‘ln_Pri’ Priority of a library

‘OpenC’ Here you see, how often the library was opened.

‘RPC’ ‘RPC’ means ‘RAM Pointer Count’ and shows how many jump
addresses of the library point into RAM. In this way many pro-
grams — like the setpatch command from Commodore— patch
the system.

Many viruses patch the system in this way too, but don’t panic
now. If you check your system in regular intervals with a current
virus killer, it should be out of danger.

If the whole program code of the library is located in RAM,
you will find a dash (minus sign) here, because in this case it’s
unimportant how many jump addresses point into RAM.

‘ln_Type’ Type of this structure (usually ‘library’)

Actions

‘Update’ The list of libraries will be updated.

‘Print’ This function allows you to send the list of ‘Libraries’ to printer
or a selected file.

‘Remove’ The selected library will be removed with this function provided
that no program uses this library anymore and the ‘OpenC’ is
zero.

Some libraries can’t be removed from system without a reset.
So you shouldn’t wonder about it, if this happens.

‘Close’ A library must be closed by all programs, if you want to remove
it from system. In this case the ‘OpenC’ is zero.

If you select this function, you will be asked, how often you want
to close it. You can choose between ‘Once’ and ‘All’.

Select ‘All’ and the library will so often be closed till the ‘OpenC’
is zero.

14 Scout

‘Priority’
Herewith the priority of the library can be changed. A little win-
dow will be opened, that asks you for a new priority. Through
the new priority it can happen that the library gets a new place
in the list of libraries.

‘More’ A window will be opened that includes more details of the li-
brary.

‘Exit’ Selecting this gadget will close the ‘library’ window.

4.8 Locks

A lock structure shows you, that a program reads from or perhaps write
into a file or a directory. With this type of structure the system prevents,
that a file will be deleted while another program gets some data from it.

Column items

‘Access’ Here you can see the type of access. This could be ‘READ’, ‘WRITE’
or ‘OWN’. ‘OWN’ stands for a lock Scout created to get the elements
of this list.

‘Path’ Path of the file or directory

Actions

‘Update’ The list of ‘Locks’ will be updated.

‘Print’ This function allows you to send the list of ‘Locks’ to printer or
a selected file.

‘Remove’ A lock will be removed through dos.library’s ‘UnLock()’ func-
tion.

‘Pattern’ If you give Scout a pattern, only the locks with a matching path
will be shown.

‘Exit’ The ‘Locks’ window will be closed.

4.9 Memory

In this list you will find the segments of your memory. At least you will
find an entry for your chip memory.

Chapter 4: How to use Scout 15

Column items

‘ln_Name’ Name of the memory segment (e.g. ‘chip memory’)

‘ln_Pri’ Priority of memory

‘mh_Lower’
First address of memory

‘mh_Upper’
Last address of memory

Actions

‘Print’ This function allows you to send the list of the memory segments
to printer or a selected file.

‘Priority’
This function allows you to change the priority of a memory
segment. The memory segment with the highest priority will be
preferred from system, provided that no certain type of memory
is demanded.

‘More’ Another window will be opened. This window includes more
information about the memory segment.

‘Exit’ The window will be closed.

4.10 Mounted Devices

In this list you will find all your devices like disk drives, printer devices,
etc.

Column items

‘Name’ Name of the device

‘Unit’ Unit number

‘Heads’ Number of heads

‘Cyl’ Number of cylinders

‘State’ The state shows you for example, if a disk is in drive.

‘DiskType’
Type of a disk (e.g. OFS (OldFileSystem), FFS (FastFileSys-
tem), . . .)

‘Handler or Device’
The handler or the device you find here has to manage the stream
of data from and to the device.

16 Scout

Actions

‘Update’ The list will be updated.

‘Print’ This function allows you to send the list of ‘Mounted Devs’ to
printer or a selected file.

‘Exit’ The window will be closed.

4.11 Ports

Programs are able to communicate together through ports.

Column items

‘Address’ Here you will find the port structure.

‘ln_Name’ Name of port

‘ln_Pri’ Priority of port

‘mp_SigTask’
The task is communicating through the port.

Actions

‘Update’ The ports list will be updated.

‘Print’ This function allows you to send the list of ‘Ports’ to printer or
a selected file.

‘Remove’ The port will be removed.

‘Priority’
Herewith the port priority can be changed.

‘Exit’ The ‘Ports’ window will be closed.

4.12 Resident Commands

This list includes all resident commands. That means all commands you
find in ROM and the commands you made ‘resident’ through the resident
command.

Positions and sizes of their hunks you will find here, too.

Chapter 4: How to use Scout 17

Column items

‘Name’ Name of the command

‘UseCount’
Here you can see, how often a command was being executed at
the time the list was build.

‘Lower’ First address of hunk in memory

‘Upper’ Last address of hunk in memory

‘Size’ Size of hunk (upper - lower - 8 bytes overhead)

Actions

‘Update’ The list of ‘Resident Commands’ will be updated.

‘Print’ This function allows you to send the list of ‘Resident Commands’
to printer or a selected file.

‘Remove’ The selected command will be removed with this function pro-
vided that no program uses this command anymore and the
‘UseCount’ is zero.

‘Exit’ The window disappears.

4.13 Residents

Resident modules are reset-protected segments (code and data). In the
list of ‘Residents’ you usually find libraries, devices and resources. A pro-
grammer has the possibility to make his own programs reset-protected. He
has to initialize a resident structure for it and then he can link the program
through the kick-vectors (see Section 4.17 [Vectors], page 21) to the list of
the resident modules. The residents you linked to system are usually located
in RAM and are of a different color.

If you find a resident module that points into RAM and you don’t know
which program has created it, you should start your favourite virus detector
and let it check your memory. Many viruses prefer this way to travel around.

Column items

‘Address’ At this address the resident module is located.

‘ln_Name’ Name of the resident module

‘rt_Pri’ Priority

‘rt_IdString’
Identity string of the resident module.

18 Scout

Actions

‘Update’ The list of ‘Residents’ will be updated.

‘Print’ This function allows you to send the list of ‘Residents’ to printer
or a selected file.

‘More’ Selecting this gadget opens a new window with more information
about the selected resident module.

‘Exit’ The ‘Residents’ window will be closed.

4.14 Resources

Usually a resource is — like a library (see Section 4.7 [Libraries], page 13)
— a collection of functions/procedures, which have to do certain jobs.

E.g. the ‘filesystem.resource’ includes functions for the filesystem han-
dling.

Column items

‘Address’ Address of the resource structure

‘ln_Name’ Name of a resource

‘ln_Pri’ Priority of a resource

‘OpenC’ This element shows how often the resource was opened.

‘RPC’ ‘RPC’ means ‘RAM Pointer Count’ and shows how many jump
addresses of the resource point into RAM. In this way many
programs — like the setpatch command from Commodore —
patch the system.

Many viruses patch the system in this way too, but don’t panic
now. If you check your system in regular intervals with a current
virus killer, it should be out of danger.

If the whole program code of the resource is located in RAM,
you will find a dash (minus sign) here, because in this case it’s
unimportant how many jump addresses point into RAM.

‘ln_Type’ Type of this structure (usually ‘resource’)

Actions

‘Update’ The list of ‘Resources’ will be updated.

‘Print’ This function allows you to send the list of ‘Resources’ to printer
or a selected file.

Chapter 4: How to use Scout 19

‘Remove’ The selected resource will be removed with this function, pro-
vided that no program uses it anymore and the ‘OpenC’ is zero.

‘Priority’
Herewith the priority of the resource can be changed. A
small window will be opened, that asks you for a new prior-
ity. Through the new priority it can happen that the resource
gets a new position in the list of resources.

‘More’ Select this gadget and you get a new window with more infor-
mation about the selected resource.

‘Exit’ The ‘Resources’ window will be closed.

Please note: If you should find three dashes (minus signs) at ‘OpenC’
and/or ‘RPC’, the resource has no typical library structure. This happens for
example at the ‘FileSystem.resource’.

4.15 Semaphores

The use of semaphores is a way of single-threading critical sections. For
example only one program is allowed to use the printer at one time, otherwise
the texts would be mixed.

Column items

‘ln_Name’ Name of a semaphore

‘Nest’ This item counts how often the semaphore has been obtained by
the owner task.

‘Queue’ This counter shows you, how many programs want to obtain the
semaphore.

‘Owner’ Here you will find the name of the task that owns the semaphore.

Actions

‘Update’ The list of ‘Semaphores’ will be updated.

‘Print’ This function allows you to send the list of ‘Semaphores’ to
printer or a selected file.

‘Obtain’ This function is used to gain access to a semaphore. The
‘NestCnt’ will be increased at one by this call.

‘Release’ Herewith you can make a signal semaphore available to others.

‘Exit’ The ‘Semaphores’ window will be closed.

20 Scout

4.16 Tasks

In this window you find a list of all tasks and processes being in system.
Each program you start will be executed as a task or process.

Column items

‘ln_Name’ Name of the task/process

‘ln_Type’ Type of the structure (‘task’ or ‘process’)

‘ln_Pri’ Priority of the task/process

‘NUM’ If a non detaching program was started from shell, you will find
here the number of the process. Programs you started from
Workbench have a dash here.

‘State’ Here you see the state of the task or process. You will find
Scout’s own process on the top of the list with a ‘run’ at this
place, because this process is always running when it gets the
task list.

‘ready’ means the task wants to work, but it’s interrupted by
the execution of another task.

A task that is waiting for a certain signal is in the state ‘wait’.
In this case it doesn’t need processing time.

‘SigWait’ Signalmask the task is waiting for.

Actions

‘Print’ This function allows you to send the list of ‘Tasks’ to printer or
a selected file.

‘Freeze’ With this function you freeze the selected task. It can still be
found in the list of tasks, but it gets no processing time from
system.

Warning: If you try to freeze tasks essential to the
system like ‘input.device’, you should have saved all
important data, cause a RESET is the only way out!

‘Activate’
A frozen task can be activated here.

‘CPU’ Here you will find a text field and a cycle gadget. This text field
displays — dependent on the state of the cycle gadget — the
CPU load in percent.

For the cycle gadget you can choose between three states:

Chapter 4: How to use Scout 21

‘off’ In this case the CPU load won’t be displayed. If you
select another state, Scout will patch some system
functions to calculate the CPU load of all tasks.

‘full’ If you select this state, Scout sets the real cpu load
to 100%. That means the total of the CPU loads
of all tasks and processes will be 100%. Therefore
nothing will be displayed in the text field.

‘in %’ Scout starts a task named ‘ Scout’s cheat task ’
to calculate the real CPU load and it will be dis-
played in the text field.

‘Secs’ This string gadget allows you to set the intervall time for up-
dating of the CPU load display.

‘Update’ The list will be updated.

‘Remove’ A task will be removed from the list. You should prefer the
freeze function, if you perhaps need this task again.

See also ‘Break’!

‘Signal’ If you select a signal mask, it will be send to the task.

‘Break’ A signal mask that includes the signals CTRL-C and CTRL-D
will be send to the task you selected. Many tasks and processes
end, if they receive these signals.

‘Priority’
The priority of a task can be changed with this function.

‘More’ Selecting this gadget will open another window that displays
more informations about the task or the process.

‘Exit’ The window will be closed.

4.17 Vectors

Actions

‘Update’ The displayed vectors will be updated.

‘Print’ This function allows you to send the list of ‘Vectors’ to printer
or a selected file.

‘Exit’ The window will be closed.

22 Scout

Reset Vectors

A program can make itself reset-protected by using the reset vectors. If
the vectors are unused, they have a value of zero. The programs which use
the Kick-Vectors (KickTagPtr, KickMemPtr and KickCheckSum) can also
be found in the list of resident structures. See also Section 4.13 [Residents],
page 17.

Auto Vector Interrupts

In a computer system with a MC68000 processor you will find the seven
‘Auto Vector Interrupts’ from address $64 to address $7c. Higher proces-
sors (MC68010, etc.) have the VBR (Vector Base Register) that allows you
to move the interrupt table to FAST-MEM. The system will be a little bit
faster then. Scout uses the VBR if it exists.

Interrupt Vectors

Here you see 16 interrupt vectors (IntVecs). These vectors are located in
the ‘ExecBase’ (base structure of the exec.library).

4.18 Windows

All screens with the windows opened on them are listed here. Screens are
of a different color as windows.

Column items

‘Pos(x,y)’
x and y position of the screen/window

‘Size(x,y)’
x and y size of the screen/window

‘Title’ Title of the screen/window

Actions

‘Update’ The list will be updated.

‘Print’ This function allows you to send the list of ‘Windows’ to printer
or a selected file.

‘Close’ With this function it is possible to close screens and/or windows.
If you close a screen, all windows on it will be closed too.

Chapter 4: How to use Scout 23

‘To Front’ The selected screen/window will be popped to front.

‘More’ If you select this gadget another window will be opened that
displays more informations about the window or the screen.

‘Exit’ The window will be closed.

4.19 Scout and AmiTCP

This section will show you what you have to do for using Scout as a
TCP/IP service through AmiTCP. Nearly all functions of Scout can also be
used via AmiTCP.

Now some knowledge will be assumed. If you don’t know, what kind of
program AmiTCP represents, you should read AmiTCP’s user’s manual before.
(See also Section 3.3 [AmiTCP], page 5.)

If you have installed AmiTCP, you can use Scout as client and server.
Except the installed programs of AmiTCP you don’t need another program
for using Scout on networks.

If you want to make your computer available for other systems on the
network, you have to do following two steps:

1. Add the line ‘scout 6543/tcp’ to file ‘AmiTCP:db/services’.

2. Now please add the line ‘scout stream tcp nowait root dh0:scout’ to
file ‘AmiTCP:db/inetd.conf’. Make sure that the path at the end of
this line is the right path for scout.

That’s it! If you start AmiTCP now, your computer is available for other
systems through using the options ‘HOST’, ‘USER’ and ‘PASSWORD’.

Example: If I want perform some actions on some system struc-
tures of my own system for example, I have to start Scout through
something like:

1> scout HOST crash.north.de USER atte PASSWORD secret

If you leave out option ‘PASSWORD’, you will be asked for the correct
password through the ‘password:’ prompt. In this case nobody can see
your password, because it won’t be displayed in shell.

If you don’t use option ‘USER’, AmiTCP takes the username that is actually
available in system.

The usage of AmiTCP doesn’t provide the installation of MUI. All of
Scout’s shell commands (see also Section 6.2 [Commands], page 28) can
be used via network through AmiTCP.

Example: If I want to get the task list of my system, I have to use
something like:

1> scout HOST crash.north.de USER atte PASSWORD secret Tasks

24 Scout

You and all other users must always identify themselves through their
usernames (option ‘USER’) and their passwords (option ‘PASSWORD’). It’s
also possible to allow or deny certain systems the usage of some services
through the file ‘AmiTCP:db/inet.access’. See also the user’s manual of
AmiTCP.

If you want to get more informations about the implemented options and
commands, you should also see Chapter 5 [Options], page 25 and Section 6.2
[Commands], page 28.

4.20 Scout without MUI

Nearly all through the graphical user interface available functions of
Scout are also available via shell. Therefore you don’t really need MUI for
using Scout. But if you want to use Scout’s graphical user interface, you
must have MUI in your system.

Chapter 5: Options 25

5 Options

There are some options for Scout which you can use, when you start the
program. The following options are available from shell and as tool types
from Workbench.

‘ICONIFIED’
Usage: ICONIFIED

If this option is activ, Scout starts iconified.

‘PORTNAME’
Usage: PORTNAME=portname

The name of Scout’s ARexx port can be changed into portname.
Without this option the ARexx port is called ‘SCOUT.X’. The
‘X’ stands for a decimal number that will be incremented, if a so
called port already exists.

‘TOOLPRI’

Usage: TOOLPRI=value

This option allows you to change the priority of Scout’s process
into value.

‘STARTUP’

Usage: STARTUP=scriptname

You can choose an ARexx script scriptname, that will be ex-
ecuted at the start of Scout. In this way you can open more
than only the main window. If for example the ARexx script in-
cludes the command ‘OpenWindow Tasks’, the task list window
will always be opened when the program starts.

(See also Section 6.2 [ARexx port], page 28.)

‘INTERVALTIME’
Usage: INTERVALTIME=seconds

This options allows you to save your preferred update time for
the list of tasks. (See also Section 4.16 [Secs], page 20.)

‘CPUDISPLAY’
Format: CPUDISPLAY=value

Through the variable value you can select the state of the ‘CPU’
cycle gadget you find in the ‘Tasks’ window. (See also Sec-
tion 4.16 [CPU], page 20.)

‘1’ means ‘CPU: full’

‘2’ means ‘CPU: in %’

‘HOST’

26 Scout

Format: HOST=hostname

This options allows you to specify the system (hostname) you
want to manipulate via network through AmiTCP.

‘USER’

Format: USER=username

You have to use this option to identify yourself by using Scout
as a TCP/IP service.

‘PASSWORD’
Format: PASSWORD=password

Without a password Scout can’t connect to another system via
network. This option allows you to set the correct password.

‘COMMAND’

Format: COMMAND=commandline

Nearly all of Scout’s implemented functions are available from
shell through this option. You don’t need the ‘COMMAND’ key to
use this option. (See also Section 6.2 [Commands], page 28.)

‘SORTTASKSBYNAME’
Format: SORTTASKSBYNAME

If this option is used, Scout sorts the list of tasks by name.

‘SINGLEWINDOWS’
Format: SINGLEWINDOWS

Some users don’t like to handle the many windows of Scout. This
option solves the problem of too many windows. If this option
is selected, only one list window and only one detail window is
opened at a time.

Chapter 6: Scout’s commands via ARexx and shell 27

6 Scout’s commands via ARexx and shell

Scout supports two kinds of commands:

1. commands only available from shell

2. commands available from ARexx and shell

ARexx port

It’s a feature of MUI to give each application its own ARexx port. There-
fore Scout also has an ARexx port that usually has the name ‘SCOUT.X’.
The ‘X’ stands for a decimal number that will be incremented, if a so called
port already exists.

You will find the name of Scout’s ARexx port in the window you get, if
you select the ‘Project/About’ menu.

Using tasknames:

If a task or a process was started from shell and hasn’t detached itself,
you will find the name of the command being executed, where usually the
taskname is displayed. The real name of those tasks usually is something
like ‘Background CLI’, but such a taskname isn’t useful.

Example: If you start a non detaching task like ‘DH0:Debug/Sushi’
from shell, you will see ‘DH0:Debug/Sushi’ as taskname.

Some ARexx commands need a taskname as parameter. You have to
select those from CLI started self detaching tasks by using their command
names like Scout displays them in the lists of tasks.

6.1 Commands only available from shell

‘Help’

Format: Help

This command is the most important one and it doesn’t need
parameters. If you try Help, Scout prints a list of all available
commands to shell. =:^)

Now 18 commands follow. These commands allow the user to get all lists
of system structures from shell. Therefore you only need to install MUI for
using Scout’s graphical user interface.

Each of the following commands has a shortened form that stands behind
the command in parentheses.

28 Scout

Assigns (a), Commands (c), Devices (d), Expansions (e), Fonts
(f), InputHandlers (h), Interrupts (i), Libraries (l), Memory
(m), Mounts (n), Locks (o), Ports (p), Residents (r), Semaphores
(s), Tasks (t), Resources (u), Vectors (v) und Windows (w)

Example: To get the list of ports, you only have to use ‘scout
ports’ or ‘scout p’ from shell.

6.2 Commands available from ARexx and shell

‘FindTask’
Usage: FindTask task

This command allows you to check, if task task exists in system
or not. The result is the address of the task task, if it has been
found. task can be the name or the address of a task.

‘FreezeTask’
Usage: FreezeTask task

The task taskname will be frozen. After that it will still be
found in system’s task list, but then it doesn’t need processing
time. You can choose the name or the address of a task for task.

‘ActivateTask’
Usage: ActivateTask task

If task task was frozen, it will be activated, otherwise an error
occured. task is again a task’s name or an address.

‘RemoveTask’
Usage: RemoveTask task

This command removes the task task. It’s lost forever.

‘BreakTask’
Usage: BreakTask task

Scout sends the task task a certain signal mask that includes the
signals CTRL-C and CTRL-D. Many programs support these
signals and finish themselves, if they receive one of them.

‘SignalTask’
Usage: SignalTask task hexsignal

This command allows you to send a signal hexsignal to the task
task. The signal must specified as a hexadecimal number.

Example:

SendSignal ’scout’ 0x001000

sends task ‘scout’ a CTRL-C and after that Scout ends.

‘SetTaskPri’

Chapter 6: Scout’s commands via ARexx and shell 29

Usage: SetTaskPri task priority

The task task gets a new priority (priority).

‘RemovePort’
Usage: RemovePort port

The port port will be removed from Scout. port can be the
name of a port or its address.

‘GetLockNumber’
Usage: GetLockNumber lockpattern

This command returns the number of locks which have paths
matching to the pattern lockpattern.

Example: Use the command

GetLockNumber ’WORK:Utilities/#?’

and you will know, how many locks are currently used for files
in the directory ‘WORK:Utilities/’.

‘RemoveLocks’
Usage: RemoveLocks lockpattern

Use this command and all locks which have paths match-
ing to the pattern lockpattern will be removed. (See also
GetLockNumber.)

‘RemoveLock’
Format: RemoveLock lockaddress

The lock at adress lockaddress will be removed.

‘FindNode’
Usage: FindNode nodetype nodename

This command allows you to find a certain node. You only have
to know its name (nodename) and its type (nodetype).

Nodetype can have following values: ‘LIBRARY’, ‘DEVICE’,
‘RESOURCE’, ‘MEMORY’, ‘SEMAPHORE’, ‘PORT’ or ‘INPUTHANDLER’.

Example: If you want to get the address of the ‘disk.resource’
you must use:

FindNode RESOURCE ’disk.resource’

‘GetPriority’
Usage: GetPriority nodeaddress

This command allows you to check the priority of a certain node
structure. This includes all following structure types: tasks, li-
braries, devices, resources, ports, residents, input handlers, in-
terrupts, semaphores and the elements of the memory list.

You only have to know the address (nodeaddress) of that struc-
ture.

Example: The following ARexx commands store the priority of
your chip memory in the variable ‘pri’:

30 Scout

FindName MEMORY ’chip memory’
addr = result
GetPriority addr
pri = result

‘SetPriority’
Usage: SetPriority nodetype nodename

If you want to change the priority of the node nodename, you can
use this command. Again nodetype can have following values:
‘LIBRARY’, ‘DEVICE’, ‘RESOURCE’, ‘MEMORY’, ‘SEMAPHORE’, ‘PORT’
or ‘INPUTHANDLER’.

‘CloseLibrary’
Format: CloseLibrary library

The library library will be closed once. library can be the name
of the library or its address.

‘RemoveLibrary’
Format: RemoveLibrary library

The library library will be removed, if no program uses it.

‘RemoveDevice’
Format: RemoveDevice device

The selected device device will be removed. For device use the
name or the address of the device.

‘RemoveResource’
Format: RemoveResource resource

The resource resource will be removed.

‘ObtainSemaphore’
Format: ObtainSemaphore semaphore

This command allows you to obtain the given semaphore.
semaphore can be the semaphore’s name or address.

‘ReleaseSemaphore’
Format: ReleaseSemaphore semaphore

The semaphore semaphore will be once released.

‘RemoveSemaphore’
Format: RemoveSemaphore semaphore

You are able to remove the semaphore semaphore by using this
command.

‘RemoveInputhandler’
Format: RemoveInputhandler inputhandler

The input handler inputhandler selected through name or ad-
dress will be removed.

‘FindResident’

Chapter 6: Scout’s commands via ARexx and shell 31

Usage: FindResident resident

This command returns the address of the resident structure res-
ident.

‘FindInterrupt’
Usage: FindInterrupt interruptname

The address of the interrupt interruptname will be returned.

‘RemoveInterrupt’
Format: RemoveInterrupt interruptname

The interrupt you have selected through interruptname will be
removed.

‘FlushDevs’
Usage: FlushDevs

All not used devices will be removed. The used memory will be
freed.

‘FlushFonts’
Usage: FlushFonts

If a diskfont is in memory, but no program uses it, it will be
removed.

‘FlushLibs’
Usage: FlushLibs

All not used libraries will be removed. The used memory will
be freed.

‘FlushAll’
Usage: FlushAll

This function includes FlushDevs, FlushFonts and FlushLibs.
All not used devices, libraries and fonts will be removed and the
used memory will be freed.

‘ClearResetVectors’
Usage: ClearResetVectors

The six reset vectors will be cleared, if you select this function
(see Section 4.17 [Vectors], page 21).

‘PopToFront’
Usage: PopToFront title

This command allows you to pop a screen or window to front.
You only have to know its (title).

‘CloseWindow’
Usage: CloseWindow windowtitle

This command closes the window that is specified through its
title (windowtitle).

‘CloseScreen’

32 Scout

Usage: CloseScreen screentitle

If you select this command, the screen (screentitle) will be closed
with all its windows.

‘CloseFont’
Format: CloseFont address

The font at address address will be closed once.

‘RemoveFont’
Format: RemoveFont address

This command removes the font at address address, if it’s not
used by any program.

‘RemoveCommand’
Format: RemoveCommand address

Scout makes the resident command at address address not res-
ident.

‘RemoveAssign’
Format: RemoveAssign name

With this command you’re able to remove the assign name.

‘RemoveAssignList’
Format: RemoveAssignList name address

This command removes the directory at address address from
assign name. You will find the address of that directory in the
list of assigns.

‘OpenWindow’
Usage: OpenWindow windowid

All windows you get if you select a gadget of Scout’s main
window, can be opened with this command. The windowid is
the same text you find on the main window gadgets.

Example:

OpenWindow ’Mounted Devs’

will open the window with the list of mounted devices.

Appendix A 33

AppendixA

How to get updates

The newest version of Scout should always be available in the "DEEP
THOUGHT BBS" (see below), on AmiNet or Public Domain collections,
which are up-to-date.

Support BBS

DEEP THOUGHT Bulletin Board System, Oldenburg, Germany

Node 1
+49-(0)441-383365 1200-21600 bps v.32terbo, v.42bis

Node 2
+49-(0)441-383839 1200-19200 bps v.32bis, v.42bis, ZyXEL

Node 1 Node 2
FidoNet 2:2426/2020.0 2:2426/2021.0
AmigaNet 39:170/204.0 39:170/205.0

InterNet cosinus@deepthought.north.de

Both Nodes are 24 hours online every day.
A FidoNet Mailer is running on both Nodes which accepts
FidoNet Filerequests.

Use the magic SCOUT for the newest version of SCOUT
or FILES for a complete filelist

Credits

Now I have to thank some people for supporting the development of Scout
on many different kinds:

• Klaus ‘gizmo’ Weber, he was always available to me and my many ques-
tions (not a few) during the programming of Scout.

• Christian ‘cosinus’ Stelter, he gave me the permission to use his many
manuals.

• Stefan Stuntz for his great ‘MagicUserInterface’

34 Scout

• all bug reporting and feature requesting people: Kai ‘wusel’ Siering,
Martin Hauner, Peter Meyer, Karl ‘Charly’ Skibinski, Michael ‘Mick’
Hohmann, Thore Böckelmann, Bernardo Innocenti, . . .

and last but not least

• all the others I’ve forgotten for reporting bugs, sending expansion boards
data and so on.

How to reach the author

If you have questions, suggestions, bug reports or anything else, you can
send electronic mails to:

atte@crash.north.de (Andreas Gelhausen)
or

2:2426/2020.24 (on FidoNet)

If it is not possible for you to use this way, you can send letters to:

Andreas Gelhausen
Graf Spee Str. 23b
26123 Oldenburg

- Germany -

That’s it! =:^)

Index 35

Index

AmiTCP . 5
ARexx port . 27
ARexx . 27
Assigns . 7
Author Info . 34
Boards . 9
Command Line Options 25
Command . 27
Copyright . 3
Credits . 33
DEEP THOUGHT BBS 33
Device names, logical 7
Devices . 8
Disclaimer . 3
DISKFONT . 10
Expansions . 9
Fonts . 10
Giftware . 3
Hardware . 9
Input events . 11
InputHandlers . 11
Installation . 5
Interrupts . 12
Introduction . 1
Legalities . 3
Libraries . 13
Locks . 14
Logical device names 7
MagicUserInterface . 5
Main Window . 7

Manufacturer . 9
Memory . 14
Mounted Devices . 15
MUI . 5
No Warranty . 3
Options . 25
Ports . 16
Processes . 20
RAM Pointer Count . 8
Resident Commands 16
Residents . 17
Resources . 18
ROMFONT . 10
RPC . 8
Screens . 22
Semaphores . 19
Support BBS . 33
System Requirements 5
Tasknames . 27
Tasks . 20
TCP/IP . 5
Tool Types . 25
Updates . 33
Using Scout . 7
VBR . 22
Vectors . 21
Vertical blank interrupt 12
Warranty . 3
What is Scout? . 1
Windows . 22

36 Scout

i

Table of Contents

1 Introduction . 1

2 Legalities . 3

3 Before Starting . 5
3.1 System Requirements . 5
3.2 MUI - MagicUserInterface . 5
3.3 AmiTCP . 5

4 How to use Scout . 7
4.1 Assigns . 7
4.2 Devices . 8
4.3 Expansions . 9
4.4 Fonts . 10
4.5 InputHandlers . 11
4.6 Interrupts . 12
4.7 Libraries . 13
4.8 Locks . 14
4.9 Memory . 14
4.10 Mounted Devices . 15
4.11 Ports . 16
4.12 Resident Commands . 16
4.13 Residents . 17
4.14 Resources . 18
4.15 Semaphores . 19
4.16 Tasks . 20
4.17 Vectors . 21
4.18 Windows . 22
4.19 Scout and AmiTCP . 23
4.20 Scout without MUI . 24

5 Options . 25

6 Scout’s commands via ARexx and shell 27
6.1 Commands only available from shell . 27
6.2 Commands available from ARexx and shell 28

Appendix A . 33
How to get updates . 33
Credits . 33

ii Scout

How to reach the author . 34

Index . 35

